skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aboud, Quinton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The pentagram map takes a planar polygon $$P$$ to a polygon $$P^{\prime }$$ whose vertices are the intersection points of the consecutive shortest diagonals of $$P$$. The orbit of a convex polygon under this map is a sequence of polygons that converges exponentially to a point. Furthermore, as recently proved by Glick, coordinates of that limit point can be computed as an eigenvector of a certain operator associated with the polygon. In the present paper, we show that Glick’s operator can be interpreted as the infinitesimal monodromy of the polygon. Namely, there exists a certain natural infinitesimal perturbation of a polygon, which is again a polygon but in general not closed; what Glick’s operator measures is the extent to which this perturbed polygon does not close up. 
    more » « less